MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Safety-driven system engineering process

Author(s)
Stringfellow, Margaret Virgina
Thumbnail
DownloadFull printable version (18.44Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Nancy G. Leveson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As the demand for high-performing complex systems has increased, the ability of engineers to meet that demand has not kept pace. The creators of the traditional system engineering processes did not anticipate modern complex systems, and the application of traditional processes to complex systems such as spacecraft has repeatedly led to disastrous results. Too often, system safety is considered late in the design process, after much of the design is set. This thesis presents an iterative safety-driven system engineering process to address this problem. The process integrates safety into the design process, ensuring that safety is designed into the system, rather than added on. The techniques used in this process are: I) Intent Specifications, a framework for organizing system development and operational information in a hierarchical structure; 2) the System-Theoretic Accident Modeling and Processes (STAMP) model of accident causation, a framework upon which to base powerful safety engineering techniques; 3) STAMP-based Hazard Analysis (STPA) a novel hazard analysis technique; and 4) SpecTRM-Requirements Language (SpecTRM-RL), a formal modeling language. Intent Specification is used to document the design with complete traceability from system goals, requirements, and constraints to the operational design and software code. The STAMP framework is used to apply concepts from control theory to system engineering. STPA is used to identify hazards and eliminate them or mitigate their effects to ensure a safe system design. Finally, SpecTRM-RL is used to create the blackbox behavior models. An example of this process applied to an outer moon exploration mission is presented (in the form of an intent specification) and discussed. The specification focuses on the design of the control system and functionality of the scientific instruments, while also including a high-level design of the entire spacecraft. The application of the process described in this thesis demonstrates that design decisions are safety-driven, and that the results of the hazard analysis are integrated into all aspects of the design.
Description
Thesis (S. M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.
 
MIT Barker Library copy: leaves 82 to 106 bound upside-down.
 
Includes bibliographical references (leaves 56-59).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/49685
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.