MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrafast optical pulse manipulation in three dimensional-resolved microscope imaging and microfabrication

Author(s)
Kim, Daekeun, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (47.53Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Peter T.C. So.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The availability of lasers with femtosecond, ultrafast light pulses provides new opportunities and challenges in instrument design. This thesis addresses three aspects of utilizing ultrafast light pulses in two-photon excitation microscopy. First, optical fibers are routinely used in many optical instruments but their use in two-photon microscopy is very limited. As ultrafast light pulses propagate through conventional fiber optics, light pulses are dispersed and broadened, as a result of nonlinear interactions between light and material. Two-photon excitation efficiency is reduced with pulse broadening. The recent development of photonic crystal fibers allows unprecedented control of light properties through them. This thesis provides a thorough quantitative characterization of different conventional optical fibers and photonic crystal fibers enabling better utilization of these fibers for two-photon microscopic imaging. Second, two-photon microscopic imaging is relatively slow due to the sequential nature of raster scanning. Several groups have recently sought to overcome this limitation by developing a 3D-resolved wide-field two-photon microscope using the concept of temporal focusing that is based on manipulating the dispersion of ultrafast light pulses spatially. However, the existing temporal focusing systems have poor optical sectioning capability and, due to a shortage of illumination power, low actual frame rate. In this thesis, a comprehensive mathematical model is derived for temporal focusing two-photon microscope taking key instrument design parameters into account.
 
(cont.) By optimizing instrument design and the use of high two-photon cross section quantum dots, we demonstrate single quantum dot imaging at micron level resolution at video rate. Lastly, we realize that the temporal focus concept may also be used for microfabrication. A prototype three-dimensional lithographic microfabrication system is developed and micro patterning capability based on photobleaching process is demonstrated.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Includes bibliographical references.
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/49759
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.