Show simple item record

dc.contributor.advisorMadhu Sudan.en_US
dc.contributor.authorChen, Victor Yen-Wenen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2009-12-10T17:00:18Z
dc.date.available2009-12-10T17:00:18Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/49880
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2009.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 65-68).en_US
dc.description.abstractA property tester is a fast, randomized algorithm that reads only a few entries of the input, and based on the values of these entries, it distinguishes whether the input has a certain property or is "different" from any input having this property. Furthermore, we say that a property tester has completeness c and soundness s if it accepts all inputs having the property with probability at least c and accepts "different" inputs with probability at most s + o(1). In this thesis we present two property testers for boolean functions on the boolean cube f0; 1gn. We summarize our contribution as follows. We present a new dictatorship test that determines whether the function is a dictator (of the form f(x) = xi for some coordinate i), or a function that is an "anti-dictator." Our test is "adaptive," makes q queries, has completeness 1, and soundness O(q3) 2??q. Previously, a dictatorship test that has soundness (q + 1) . 2-q is achieved by Samorodnitsky and Trevisan, but their test has completeness strictly less than 1. Furthermore, the previously best known dictatorship test from the PCP literature with completeness 1 has soundness ... . Our contribution lies in achieving perfect completeness and low sound- ness simultaneously. We consider properties of functions that are invariant under linear transformations of the boolean cube. Previous works, such as linearity testing and low-degree testing, have focused on linear properties.en_US
dc.description.abstract(cont.) The one exception is a test due to Green for "triangle freeness": a function f satisfies this property if f(x); f(y); f(x + y) do not all equal 1, for any pair x; y 2 f0; 1gn. We extend this test to a more systematic study and consider non-linear properties that are described by a single forbidden pattern. Specifically, let M denote an r by k matrix over f0; 1g. We say that a function f is M-free if there are no ~x = (x1,...,xk), where x1,...,xk 2 f0; 1gn such that f(x1),...,f(xk) = 1 and M~x = ~0. If M can be represented by an underlying graph, we can analyze a test that determines whether a function is M-free or \far" from one. Our test makes k queries, has completeness 1, and soundness bounded away from 1. The technique from our work leads to alternate proofs that some previously studied linear properties are testable, albeit with worse parameters. Our results, though quite different in terms of context, are connected by similar techniques. Our analysis of the algorithms relies on the machinery of the Gowers uniformity norm, a recent and powerful tool in additive combinatorics.en_US
dc.description.statementofresponsibilityby Victor Yen-Wen Chen.en_US
dc.format.extent68 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleThe Gowers norm in the testing of Boolean functionsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc465220342en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record