MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A SANS study of the interfacial curvatures and the phase behavior in bicontinuous microemulsions

Author(s)
Choi, Sung-Min, 1965-
Thumbnail
DownloadFull printable version (15.27Mb)
Alternative title
Small-angle neutron scattering study of the interfacial curvatures and the phase behavior in bicontinuous microemulsions
Advisor
Sow-Hsin Chen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A microemulsion is a three-component system in which oil and water are solubilized via an interfacial surfactant monolayer. Depending on the composition and various external conditions, it exhibits a wide variety of phases with corresponding mesoscopic scale interfacial structures. For scientific as well as industrial purposes, knowledge of the relation between the interfacial structure and the phase behavior is crucial but its quantitative measure is lacking. To identify the relation in a quantitative way, the natural parameters to be measured are the interfacial curvatures : Gaussian, mean, and square mean curvatures. A new small-angle neutron scattering (SANS) data analysis method to extract the interfacial curvatures was developed and applied to various microemulsions. The method involves the use of a clipped random wave model with an inverse 8th order polynomial spectral function. The spectral density function contains three basic length scales : the inter-domain distance, the coherence length, and the surface roughness parameter. These three length scales are essential to describe mesoscopic scale interfaces. A series of SANS experiments were performed at various phase points of isometric and non-isometric microemulsions. Using the developed model, the three interfacial curvatures at each phase point were determined for the first time in a practical way. In isometric bicontinuous microemulsions, the Gaussian curvature is negative and has a parabolic dependence on the surfactant volume fraction. In non-isometric systems, based on the measured interfacial curvatures, a characteristic structural transformation was identified. As the water and oil volume ratio moves away from unity, the bicontinuous structure transforms to a spherical structure through an intermediate cylindrical structure.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1998.
 
Includes bibliographical references (leaves 104-108).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/50069
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Engineering

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.