MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptation to a linear vection stimulus in a virtual reality environment

Author(s)
Tovee, Christine A. (Christine Anne), 1969-
Thumbnail
DownloadFull printable version (11.98Mb)
Advisor
Charles M. Oman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the zero-gravity environment of space, the vestibular system's functioning is compromised and astronauts receive conflicting visual and vestibular cues concerning body orientation and motion. Experiment 136 on the Neurolab space shuttle mission explored this research question. The current experiment served as a supporting study, examining human "looming linear vection" responses produced by a virtual checkerboard hallway scene moving towards the observer. In the Earth's gravity environment, the input of the vestibular system can be explored by setting the subject's body orientation (and axis of the vestibular system) in line with or perpendicular to the gravity axis. Five different virtual scene speeds were used. Six vection measures were calculated for each trial: latency, decay latency, peak magnitude of perceived self motion, rise time of magnitude, rise slope, and area (integrated distance traveled). In addition, both latency and magnitude of self-motion were examined for signs of adaptation. Particularly at low scene speeds, the latency of the onset of looming vection was significantly greater in the supine than upright posture, opposite to the effect reported by Kano (1991). Most subjects interpreted the scene as a moving horizontal hallway and the conflict between the visual and gravitational verticals may have delayed the onset of vection in the supine posture. Posture did not affect the magnitude values indicating that the vestibular system plays a minimal role in the perception of speed of self-motion. Virtual scene speed influenced all measures significantly except after-latencies. Latency decreased slightly over the first few trials in the upright posture. However, for both latency and magnitude, adaptation to the stimulus seems to be minimal when considering changes over time in either measure.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.
 
Includes bibliographical references (p. 69-70).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/50523
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.