MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An investigation of the measurement, fixturing, and trimming of large sheet metal parts

Author(s)
Sun, David P. (David Peili), 1974-
Thumbnail
DownloadFull printable version (20.09Mb)
Advisor
David E. Hardt.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Stretchformed sheet metal part production offers many challenges in process improvement such as increasing flexibility and part accuracy while decreasing cost and cycle time. The Reconfigurable Tooling for Flexible Fabrication (RTFF) project addresses these issues. This thesis investigates the measurement, fixturing, and trimming of large sheet metal parts. The objective of the thesis is to first present the current and alternative methods of three-dimensional measurement, fixturing, and trimming, especially for the RTFF project. Then, recommendations on the appropriate technology depending on the desired outcome can be made. Research show there are many potential technological changes that can be made to improve these current operations that encompass the sheet metal forming process. Three-dimensional shape measurement is investigated in detail. The current technologies are able to measure large sheet metal parts but have many disadvantages. A promising method of three-dimensional shape measurement is being researched and developed using laser speckle wavelength decorrelation. This method is still in development but initial results show that this method will decrease measurement time, decrease the amount of precision hardware needed, and decouple accuracy with the range of the object. Many of these factors are disadvantages of current measurement systems. A critical component of the promising measurement system is a precision linear actuator. A proposed design, consisting of cascaded solenoids and mechanical stops, is evaluated and shown to be unacceptable since commercial linear actuators perform the function more accurately and for lower cost.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.
 
Includes bibliographical references (p. 171-174).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/50528
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.