MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Formulation of oral dosage forms by three dimensional printing

Author(s)
Palazzolo, Robert D. (Robert David), 1973-
Thumbnail
DownloadFull printable version (17.37Mb)
Alternative title
Formulation of oral dosage forms by 3D printing
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Michael J. Cima.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Pharmaceutical grade materials were used in the fabrication of fast-release and extended-release oral dosage forms. Tablets were processed by employing a method of solid freeform fabrication known as three dimensional printingTM (3DPTM). A microcrystalline cellulose powder was used in combination with pH-dependent and permeable polymeric binder solutions. Release studies in acidic media were performed using both dye and drug (antihistamine) as actives. Deposition was performed by micro pipette into concept devices. It was concluded that printing parameters could be used to control the microstructure and release behavior. The performance of a drop-on-demand inkjet printing system was evaluated to be highly accurate, and the system was used in the fabrication of model oral dosage forms. Tablets were constructed with a permeable polymer as binder. Mechanical tests showed that the tablets were comparable to industry references for both strength and friability. A USP dissolution method involving an acid and buffer stage was used for extended-release studies. Release by diffusion was found to depend on device porosity level and drug distribution as defined during fabrication.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1998.
 
Includes bibliographical references (p. 93).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/50617
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.