Show simple item record

dc.contributor.advisorSusan Murcott.en_US
dc.contributor.authorBarnes, David Allenen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.coverage.spatialf-gh---en_US
dc.date.accessioned2010-01-07T21:02:31Z
dc.date.available2010-01-07T21:02:31Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/50622
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2009.en_US
dc.descriptionIncludes bibliographical references (leaves 93-96).en_US
dc.description.abstractThis study assesses the current state of rainwater harvesting in the Northern Region of Ghana and makes recommendations regarding if and how rainwater harvesting could be used to address Pure Home Water's goal of reaching 1 million people in the next five years with safe drinking water. Three principal aspects of the water supply are considered: quality, quantity, and cost. Bacteriological water quality is tested to determine the level of risk. Rainwater supplies ranged from low (1 to 10 E.coli CFU/100ml) to intermediate risk (10 to 99 E. coli CFU/100ml.) Time-based reliability is simulated using a simulation model in Microsoft Excel. Reliability ranges from five percent to ninety-nine percent. Unit cost per cubic meter is calculated for surveyed rainwater harvesting systems in Northern Ghana. The unit cost of water from these designs ranged between approximately $1/m3 and $10/m3. Storage-reliability-yield relationship is developed and graphed for the Northern Region. This curve is useful for properly sizing rainwater harvesting systems. The use of a filter to post-treat rainwater before consumption is recommended, both for use with the rainwater, but also for provision of safe water when the users rely on a supplementary unimproved source, usually a dugout or dug well, for water supply. The feasibility of low-cost underground storage should be investigated. The geology and soil conditions in the Tamale region might provide a suitable match for a cheaper storage mechanism using plastic tarps and constructed pits.en_US
dc.description.abstract(cont.) If the cost of storage could be lowered, rainwater harvesting could contribute in a larger way to Pure Home Water's mission and reach more people. Do-it-yourself rainwater harvesting in the Northern Region of Ghana is a fairly widespread. Finding ways to improve the quantity and quality of informal harvesting is a potential means for improving water supply for many low income households in the Northern Region. Currently, rainwater harvesting presents an opportunity to extend water supply to rural dwellers where few other alternatives are available.en_US
dc.description.statementofresponsibilityby David Allen Barnes.en_US
dc.format.extent101 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleAssessment of rainwater harvesting in Northern Ghanaen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc475690841en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record