MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of cladding on mid-rise buildings in the Northridge Earthquake

Author(s)
Kuo, Chuan-Hua
Thumbnail
DownloadFull printable version (18.71Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, the importance of cladding panels on mid-rise buildings in an earthquake-prone region is investigated. A cladding panel acts as a protective or an insulating layer to control weather infiltration. The Northridge Earthquake, which took place on January 17, 1994, caused numerous heavy cladding panels to fall off the walls of residential and commercial buildings. The failure of these panels was a result of an insufficient understanding of the cladding behaviors as a subsystem in the three-dimensional framing system. Cladding is designed to be isolated from the structural frame movement during an earthquake. However, numerous studies have concluded that cladding interacts with the structural frame in providing lateral resistance. The advantages and disadvantages of different cladding materials, cladding systems, and cladding connections are presented in this thesis. The effects of cladding on mid-rise buildings in the Northridge Earthquake in the Los Angeles area are simulated in this study. Motion resistance contributed from cladding in a particular mid-rise building, a 19-story office building in downtown Los Angeles, is investigated. Analyses of clad models and unclad models are carried out, and clad models are discovered to displace less than unclad models. Therefore, cladding is able to contribute lateral motion resistance to a building during an earthquake, and structural engineers should include cladding in their analysis models when designing a building.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2009.
 
Includes bibliographical references (p. 58-59).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/51570
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.