MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Duality Based Characterizations of Efficient Facets

Author(s)
Bitran, Gabriel R.; Magnanti, Thomas L.
Thumbnail
DownloadOR-092-79.pdf (1.177Mb)
Metadata
Show full item record
Abstract
Most practical applications of multicriteria decision making can be formulated in terms of efficient points determined by preference cones with polyhedral closure. Using linear approximations and duality from mathematical programming, we characterize a family of supporting hyperplanes that define the efficient facets of a set of alternatives with respect to such preference cones. We show that a subset of these hyperplanes generate maximal efficient facets. These characterizations permit us to devise a new algorithm for generating all maximal efficient facets of multicriteria optimization problems with polyhedral structure.
Date issued
1979-10
URI
http://hdl.handle.net/1721.1/5162
Publisher
Massachusetts Institute of Technology, Operations Research Center
Series/Report no.
Operations Research Center Working Paper;OR 092-79

Collections
  • Operations Research Center Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.