MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Convergence of Classical Variational Inequality Algorithms

Author(s)
Magnanti, Thomas L.; Perakis, Georgia
Thumbnail
DownloadOR-280-93.pdf (1.950Mb)
Metadata
Show full item record
Abstract
In this paper, we establish global convergence results for projection and relaxation algorithms for solving variational inequality problems, and for the Frank-Wolfe algorithm for solving convex optimization problems defined over general convex sets. The analysis rests upon the condition of f-monotonicity,which we introduced in a previous paper, and which is weaker than the traditional strong monotonicity condition. As part of our development, we provide a new interpretation of a norm condition typically used for establishing convergence of linearization schemes. Applications of our results arize in uncongested as well as congested transportation networks.
Date issued
1993-05
URI
http://hdl.handle.net/1721.1/5201
Publisher
Massachusetts Institute of Technology, Operations Research Center
Series/Report no.
Operations Research Center Working Paper;OR 280-93

Collections
  • Operations Research Center Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.