MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Unifying Geometric Solution Framework and Complexity Analysis for Variational Inequalities

Author(s)
Magnanti, Thomas L.; Perakis, Georgia
Thumbnail
DownloadOR-276-93.pdf (2.447Mb)
Metadata
Show full item record
Abstract
In this paper, we propose a concept of polynomiality for variational inequality problems and show how to find a near optimal solution of variational inequality problems in a polynomial number of iterations. To establish this result we build upon insights from several algorithms for linear and nonlinear programs (the ellipsoid algorithm, the method of centers of gravity, the method of inscribed ellipsoids, and Vaidya's algorithm) to develop a unifying geometric framework for solving variational inequality problems. The analysis rests upon the assumption of strong-f-monotonicity, which is weaker than strict and strong monotonicity. Since linear programs satisfy this assumption, the general framework applies to linear programs.
Date issued
1996-02
URI
http://hdl.handle.net/1721.1/5205
Publisher
Massachusetts Institute of Technology, Operations Research Center
Series/Report no.
Operations Research Center Working Paper;OR 276-93

Collections
  • Operations Research Center Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.