MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transcriptional network classifiers

Author(s)
Chang, Hsun-Hsien; Ramoni, Marco F.
Thumbnail
DownloadChang-2009-Transcriptional netw.pdf (603.8Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0/
Metadata
Show full item record
Abstract
Background Gene interactions play a central role in transcriptional networks. Many studies have performed genome-wide expression analysis to reconstruct regulatory networks to investigate disease processes. Since biological processes are outcomes of regulatory gene interactions, this paper develops a system biology approach to infer function-dependent transcriptional networks modulating phenotypic traits, which serve as a classifier to identify tissue states. Due to gene interactions taken into account in the analysis, we can achieve higher classification accuracy than existing methods. Results Our system biology approach is carried out by the Bayesian networks framework. The algorithm consists of two steps: gene filtering by Bayes factor followed by collinearity elimination via network learning. We validate our approach with two clinical data. In the study of lung cancer subtypes discrimination, we obtain a 25-gene classifier from 111 training samples, and the test on 422 independent samples achieves 95% classification accuracy. In the study of thoracic aortic aneurysm (TAA) diagnosis, 61 samples determine a 34-gene classifier, whose diagnosis accuracy on 33 independent samples achieves 82%. The performance comparisons with three other popular methods, PCA/LDA, PAM, and Weighted Voting, confirm that our approach yields superior classification accuracy and a more compact signature. Conclusions The system biology approach presented in this paper is able to infer function-dependent transcriptional networks, which in turn can classify biological samples with high accuracy. The validation of our classifier using clinical data demonstrates the promising value of our proposed approach for disease diagnosis.
Date issued
2009-09
URI
http://hdl.handle.net/1721.1/52336
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
BMC Bioinformatics
Publisher
BioMed Central Ltd.
Citation
Chang, Hsun-Hsien, and Marco Ramoni. “Transcriptional network classifiers.” BMC Bioinformatics 10.Suppl 9 (2009): S1.
Version: Final published version
ISSN
1471-2105

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.