MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High energy plasmas, general relativity and collective modes in the surroundings of black holes

Author(s)
Coppi, Bruno
Thumbnail
DownloadCoppi_High Energy Plasmas.pdf (1.619Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Attribution-Noncommercial-Share Alike 3.0 Unported http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The theoretical finding of composite disk structures around compact objects (e.g. black holes) and recent experimental observations indicate that highly coherent and dynamically important magnetic field configurations exist in the core of these plasma structures. Coherent configurations involving closed magnetic surfaces provide a means to resolve the 'accretion paradox' for a magnetized disk while the formation of jets emitted in the close vicinity of the compact object is related to these configurations. The absence of vigorous accretion activity in the presence of black holes in old galaxies can be attributed to the loss of the surrounding coherent magnetic configurations during their history. The relevant dynamics include axisymmetric (ballooning) modes as well as tridimensional spirals which can be excited from disks with a 'seed' magnetic field, under the effects of differential rotation and of the vertical plasma pressure gradient. The properties of these spirals are strongly dependent on their vertical structure. Axisymmetric modes can produce vertical flows of thermal energy and particles in opposing directions that can be connected to the winds emanating from disks in active galactic nuclei (AGNs). A similarity to the effects of temperature gradient driven modes in magnetically confined laboratory plasmas is pointed out. Spiral modes that are oscillatory in time and in the radial direction can produce transport of angular momentum toward the outer region of the disk structure, a necessary process for the occurrence of accretion. The excitation of radially localized density spirals co-rotating with the plasma, at a distance related to the Schwartzchild radius RS = 2GM*/c2, is proposed as the explanation for high frequency quasiperiodic oscillations (HFQPOs) of non-thermal x-ray emission from compact objects.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/52508
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Plasma Physics and Controlled Fusion
Publisher
Institute of Physics
Citation
M. Lattanzi and G. Montani. “A separable solution for the oscillatory structure of plasma in accretion disks.” EPL (Europhysics Letters) 89.3 (2010): 39001.
Version: Author's final manuscript
ISSN
0741-3335
Keywords
astrophysics and astroparticles, gravitation and cosmology, plasma physics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.