MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Asynchronous data-dependent jitter compensation

Author(s)
Price, Michael, Ph. D. (Michael R.). Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.742Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Vladimir M. Stojanovic and Michael St. Germain.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Data-dependent jitter (DDJ) caused by lossy channels is a limiting factor in the bit rates that can be achieved reliably over serial links. This thesis explains the causes of DDJ and existing equalization techniques, then develops an asynchronous (clock-agnostic) architecture for DDJ compensation. The compensation circuit alters the transition times of a digital signal to cancel the expected channel-induced delays. It is designed for a 0.35 [mu]m BiCMOS process with a 240 x 140 ¹m footprint and typically consumes 3.4 mA, a small fraction of the current used in a typical transmitter. Extensive simulations demonstrate that the circuit has the potential to reduce channel-induced DDJ by at least 50% at bit rates of 6.25 Gb/s and 10 Gb/s.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 95-96).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/52771
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.