MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A perception-guided approach to motion and manipulation planning

Author(s)
Wei, Yuan
Thumbnail
DownloadFull printable version (417.1Kb)
Alternative title
Perception-guided approach to sampling-based motion and manipulation planning under uncertainty
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Nicholas Roy.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Rapidly-Exploring Random Trees (RRT) have been successfully applied to many different robotics systems for motion and manipulation planning under non-holonomic constraints. However, the conventional RRT algorithm may perform poorly in the presence of noise and uncertainty. This thesis proposes a modified form of the algorithm that seeks to reduce the robot's uncertainty in its estimate of the target by choosing solutions that maximize the opportunities for the robot's sensors to perceive the target. This new perception-guided technique will be tested in simulation and compared to the conventional RRT as well as other approaches taken from the literature. The ultimate goal is to integrate this method with a semi-autonomous robotic forklift charged with the task of approaching and picking up a loaded wooden pallet over rough terrain.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 57-59).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/52773
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.