A measurement of the atmospheric neutrino flux and oscillation parameters at the Sudbury Neutrino Observatory
Author(s)
Sonley, Thomas John
DownloadFull printable version (2.220Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Joseph Formaggio.
Terms of use
Metadata
Show full item recordAbstract
Through-going muon events are analyzed as a function of their direction of travel through the Sudbury Neutrino Observatory. Based on simulations and previous measurements, muons with a zenith angle of 1 < cos([theta]zenith) < 0:4 are selected as atmospheric neutrino-induced muons. A two-neutrino analysis of these events agrees with the oscillation parameters observed by the Super Kamiokande and Minos experiments, and places 2-D limits of [delta]m2 23 = 1:8+7:1 ??1:1 103 eV2 at the 68% confidence level, and sin2(2[theta]23) > 0:33 at the 90% confidence level. In addition, the flux of atmospheric neutrinos is measured in 1-D with a 68% confidence level to be 1:24+0:11 0:10 times the prediction of the BARTOL group based on SNO data alone, and 1:27+/-0.09 times the prediction when the oscillation parameters are constrained by the Super Kamiokande and Minos results.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student submitted PDF version of thesis. Includes bibliographical references (p. 119-121).
Date issued
2009Department
Massachusetts Institute of Technology. Department of PhysicsPublisher
Massachusetts Institute of Technology
Keywords
Physics.