MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergency delivery of Vasopressin from an implantable MEMS rapid drug delivery device

Author(s)
Ho Duc, Hong Linh, 1978-
Thumbnail
DownloadFull printable version (944.0Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Michael J. Cima.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An implantable rapid drug delivery device based on micro-electro-mechanical systems (MEMS) technology was designed, fabricated and validated for the in vivo rapid delivery of vasopressin in a rabbit model. In vitro characterization of device performance found the device capable of reliably and reproducibly delivering 85% of its loaded drug solution. A comparison of intraperitoneal and subcutaneous injections of vasopressin in rabbits was performed to determine the implantation location for the device. Both routes of delivery were found to be viable implantation locations, and the less invasive subcutaneous site was chosen. Vasopressin was released from the subcutaneously implanted device in anesthetized rabbits and found to exert a measurable effect on blood pressure. The bioavailability of vasopressin delivered from the device was found to be 6.2% after one hour. Proof-of-concept experiments were also conducted to address long-term stability of drugs in the implanted device and wireless activation of the device. These experiments defined areas of future research for improvement of the device.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/52790
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.