MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crater ice deposits near the south pole of Mars

Author(s)
Westbrook, Owen William
Thumbnail
DownloadFull printable version (19.87Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Maria T. Zuber.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Layered deposits atop both Martian poles are thought to preserve a record of past climatic conditions in up to three km of water ice and dust. Just beyond the extent of these south polar layered deposits (SPLD), dozens of impact craters contain large mounds of fill material with distinct similarities to the main layered deposits. Previously identified as outliers of the main SPLD, these deposits could offer clues to the climatic history of the Martian south polar region. We extend previous studies of these features by cataloging all crater deposits found near the south pole and quantifying the physical parameters of both the deposits and their host craters. Using MOLA topography data, MOC and THEMIS imagery, and SHARAD radar sounding data, we characterize the distribution, morphology, and structure of the deposits. In addition, we examine the effect of the crater microenvironment on the formation and persistence of these deposits, exploring the relative importance of solar and eolian processes in shaping their present-day distribution and appearance. We consider the possibility that crater sand dunes may have promoted ice accumulation over time and weigh various explanations for the origins and larger climatic significance of these features.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2009.
 
Includes bibliographical references (p. 55-60).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53113
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.