MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploratory data analysis for preemptive quality control

Author(s)
Karamancı, Kaan
Thumbnail
DownloadFull printable version (24.21Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Stanley B. Gershwin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I proposed and implemented a methodology to perform preemptive quality control on low-tech industrial processes with abundant process data. This involves a 4 stage process which includes understanding the process, interpreting and linking the available process parameter and quality control data, developing an exploratory data toolset and presenting the findings in a visual and easily implementable fashion. In particular, the exploratory data techniques used rely on visual human pattern recognition through data projection and machine learning techniques for clustering. The presentation of finding is achieved via software that visualizes high dimensional data with Chernoff faces. Performance is tested on both simulated and real industry data. The data obtained from a company was not suitable, but suggestions on how to collect suitable data was given.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Includes bibliographical references (p. 113).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53126
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.