dc.contributor.advisor | Ahmad Abdulkader and Tomas Lozano-Perez. | en_US |
dc.contributor.author | Hurwitz, Jeremy Scott | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2010-03-25T15:06:13Z | |
dc.date.available | 2010-03-25T15:06:13Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/53140 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. | en_US |
dc.description | Includes bibliographical references (p. 37-39). | en_US |
dc.description.abstract | In this thesis, we study the performance of distributed output coding (DOC) and error-Correcting output coding (ECOC) as potential methods for expanding the class of tractable machine-learning problems. Using distributed output coding, we were able to scale a neural-network-based algorithm to handle nearly 10,000 output classes. In particular, we built a prototype OCR engine for Devanagari and Korean texts based upon distributed output coding. We found that the resulting classifiers performed better than existing algorithms, while maintaining small size. Error-correction, however, was found to be ineffective at increasing the accuracy of the ensemble. For each language, we also tested the feasibility of automatically finding a good codebook. Unfortunately, the results in this direction were primarily negative. | en_US |
dc.description.statementofresponsibility | by Jeremy Scott Hurwitz. | en_US |
dc.format.extent | 39 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Error-correcting codes and applications to large scale classification systems | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 505516307 | en_US |