dc.contributor.advisor | Gerald Jay Sussman. | en_US |
dc.contributor.author | Tobenkin, Mark M | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2010-03-25T15:09:25Z | |
dc.date.available | 2010-03-25T15:09:25Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/53166 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. | en_US |
dc.description | Includes bibliographical references (p. 101-103). | en_US |
dc.description.abstract | This thesis presents a method for improving passive acoustic tracking. A large family of acoustic tracking systems combine estimates of the time difference of arrival (TDoA) between pairs of spatially separated sensors - this work improves those estimates by independently tracking each TDoA using a Bayesian filter. This tracking is particularly useful for overcoming spatial aliasing, which results from tracking narrowband, high frequency sources. I develop a theoretical model for the evolution of each TDoA from a bound placed on the velocity of the target being tracked. This model enables an efficient form of exact marginalization. I then present simulation and experimental results demonstrating improved performance over a simpler nonlinear preprocessor and Kalman filtering, so long as this bound is chosen appropriately. | en_US |
dc.description.statementofresponsibility | by Mark M. Tobenkin. | en_US |
dc.format.extent | 103 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Nonlinear filtering for narrow-band time delay estimation | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 516290175 | en_US |