MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamically fighting bugs : prevention, detection and elimination

Author(s)
Artzi, Shay
Thumbnail
DownloadFull printable version (24.44Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Michael D. Ernst.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This dissertation presents three test-generation techniques that are used to improve software quality. Each of our techniques targets bugs that are found by different stake-holders: developers, testers, and maintainers. We implemented and evaluated our techniques on real code. We present the design of each tool and conduct experimental evaluation of the tools with available alternatives. Developers need to prevent regression errors when they create new functionality. This dissertation presents a technique that helps developers prevent regression errors in object-oriented programs by automatically generating unit-level regression tests. Our technique generates regressions tests by using models created dynamically from example executions. In our evaluation, our technique created effective regression tests, and achieved good coverage even for programs with constrained APIs. Testers need to detect bugs in programs. This dissertation presents a technique that helps testers detect and localize bugs in web applications. Our technique automatically creates tests that expose failures by combining dynamic test generation with explicit state model checking. In our evaluation, our technique discovered hundreds of faults in real applications. Maintainers have to reproduce failing executions in order to eliminate bugs found in deployed programs. This dissertation presents a technique that helps maintainers eliminate bugs by generating tests that reproduce failing executions. Our technique automatically generates tests that reproduce the failed executions by monitoring methods and storing optimized states of method arguments.
 
(cont.) In our evaluation, our technique reproduced failures with low overhead in real programs Analyses need to avoid unnecessary computations in order to scale. This dissertation presents a technique that helps our other techniques to scale by inferring the mutability classification of arguments. Our technique classifies mutability by combining both static analyses and a novel dynamic mutability analysis. In our evaluation, our technique efficiently and correctly classified most of the arguments for programs with more than hundred thousand lines of code.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 147-160).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53190
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.