Show simple item record

dc.contributor.advisorAnantha Chandrakasan.en_US
dc.contributor.authorBhardwaj, Manish, 1976-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-25T15:12:39Z
dc.date.available2010-03-25T15:12:39Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53191
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 141-145).en_US
dc.description.abstractWe consider the design of communications systems when the principal cost is observing the channel, as opposed to transmit energy per bit or spectral efficiency. This is motivated by energy constrained communications devices where sampling the signal, rather than transmitting or processing it, dominates energy consumption. We show that sequentially observing samples with the maximum a posteriori entropy can reduce observation costs by close to an order of magnitude using a (24,12) Golay code. This is the highest performance reported over the binary input AWGN channel, with or without feedback, for this blocklength. Sampling signal energy, rather than amplitude, lowers circuit complexity and power dissipation significantly, but makes synchronization harder. We show that while the distance function of this non-linear coding problem is intractable in general, it is Euclidean at vanishing SNRs, and root Euclidean at large SNRs. We present sequences that maximize the error exponent at low SNRs under the peak power constraint, and under all SNRs under an average power constraint. Some of our new sequences are an order of magnitude shorter than those used by the 802.15.4a standard.en_US
dc.description.abstract(cont.) In joint work with P. Mercier and D. Daly, we demonstrate the first energy sampling wireless modem capable of synchronizing to within a ns, while sampling energy at only 32 Msamples per second, and using no high speed clocks. We show that traditional, minimum distance classifiers may be highly sensitive to parameter estimation errors, and propose robust, computationally efficient alternatives. We challenge the prevailing notion that energy samplers must accurately shift phase to synchronize with high precision.en_US
dc.description.statementofresponsibilityby Manish Bhardwaj.en_US
dc.format.extent145 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCommunications in the observation limited regimeen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc525348986en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record