MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering J-aggregate cavity exciton-polariton devices

Author(s)
Bradley, Michael Scott
Thumbnail
DownloadFull printable version (21.95Mb)
Alternative title
Engineering Jelley-aggregate cavity exciton-polariton devices
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Research efforts in solution-based dye lasers and organic light-emitting devices (OLEDs) have led to advances in materials engineering and fabrication technology, propelling the field of organic solid-state photonics. Active areas of photonic research in organic systems include solid-state lasers (in both VCSEL and DFB form factor), low-threshold optical switches, and photodetectors. In all of these areas, thin films of "Jelley aggregates," or J aggregates, offer a promising materials platform thanks to their narrow linewidth and high oscillator strength at room temperature, properties resulting from delocalization of excitations across multiple strongly-coupled molecules. By placing these films in an optical microcavity, the aggregates exhibit additional strong-coupling to the cavity electric field, creating light-matter quasi-particles known as exciton-polaritons, even at room temperature. In this thesis, I discuss my research on the properties of J-aggregate thin films and on advancing the device and materials engineering of strongly-coupled devices based on J-aggregate thin films to the level of those in inorganic semiconductor systems. Exciton-polariton systems have been extensively studied at cryogenic temperatures in II-VI and III-V semiconductor quantum well systems in the past two decades as potential low-threshold VCSELs.
 
(cont.) J-aggregate-based exciton-polaritons systems, however, offer many device and engineering challenges, including: understanding the role of inhomogeneous vs. homogeneous broadening in the J-aggregate optical response, fabricating higher-quality microcavities with the ability to pump the polaritons at high intensities, and lateral patterning on the single-micron scale of organic microcavities. These topics are addressed and the outlook of organic exciton-polariton device research discussed.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 143-159).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53196
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.