Show simple item record

dc.contributor.advisorGerbrand Ceder and John Joannopoulos.en_US
dc.contributor.authorChan, Maria Kai Yeeen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2010-03-25T15:13:36Z
dc.date.available2010-03-25T15:13:36Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53198
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 123-130).en_US
dc.description.abstractThe accurate prediction of physical properties in the vast spaces of nanoscale structures and chemical compounds is made increasingly possible through the use of atomistic and ab initio computation. In this thesis we investigate lattice thermal conductivities KL and electronic band gaps E,, which are relevant to thermoelectric and photovoltaic applications, respectively, and develop or modify computational tools for predicting and optimizing these properties. For lattice thermal conductivity, we study SiGe nanostructures, which are technologically important for thermoelectric applications. From computing aL for various SiGe nanostructures, we establish that the Kubo-Green approach using classical molecular dynamics (MD) gives additional quantitative predictions not available from phenomenological models, such as the existences of a minimum value of KL as the nanostructure size is varied and of configurational dependence of KL. We carry out the minimizatin of KL in the space of atomic configurations in SiGe alloy nanowires and demonstrate the feasibility of using the cluster expansion technique to parameterize KL. We find that the use of coarse graining and a meta cluster expansion approach is effective, in conjunction with a genetic algorithm, to find configurations which drastically lower KL. The low values of KL obtained, close to the bulk amorphous limit, are due to the absence of long-range order, and such absence allows a local cluster expansion approach to optimize KL. We examine ab initio bandgap prediction for semiconductor compounds, and address the large errors of Kohn-Sham band gaps in density functional theory (DFT).en_US
dc.description.abstract(cont.) We apply corrections using the self-energy approach in the GW approximation, which includes non-local screened exchange and correlation, and find that the G₀W₀ approximation significantly reduces prediction errors compared to Kohn-Sham band gaps, though at much higher computational cost. We propose a new method involving total energies in DFT to predict the fundamental gap, by use of the properties of the screening or exchange-correlation hole in an electron gas. With this method, we are able to efficiently predict band gaps that are in agreement with experimental values.en_US
dc.description.statementofresponsibilityby Maria Kai Yee Chan.en_US
dc.format.extent130 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleAtomistic and ab initio prediction and optimization of thermoelectric and photovoltaic propertiesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc526673533en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record