MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A distortion product otoacoustic emissions (DPOAE) assessment of cochlear function in tinnitus subjects with normal hearing sensitivity

Author(s)
Acker, Leah C. (Leah Christine)
Thumbnail
DownloadFull printable version (13.83Mb)
Alternative title
Distortion product otoacoustic emissions assessment of cochlear function in tinnitus subjects with normal hearing sensitivity
DPOAE assessment of cochlear function in tinnitus subjects with normal hearing sensitivity
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jennifer Melcher and Christopher Shera.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Tinnitus, the perception of sound in the absence of an external acoustic source, disrupts the daily life of 1 out of every 200 adults, yet its physiological basis remains largely a mystery. While tinnitus and hearing loss (i.e., elevated pure tone thresholds) commonly co-occur, many people without hearing loss experience tinnitus, raising the question of whether cochlear pathology is always a prerequisite for this percept. This study used distortion product otoacoustic emissions (DPOAEs) to evaluate the cochlear amplifier of 13 tinnitus subjects and 13 non-tinnitus subjects (matched by age, sex, and audiogram) across a broad range of frequencies and intensities. DPOAE magnitudes were measured for at least 52 frequencies (500 Hz <f2 5 8 kHz, with f2ff=1.2) and nine intensities (20 dB < L2 5 60 dB, with L, = 39 + 0.4L2) in each ear. Further, this study only considered ears with normal audiograms and unremarkable history so that any abnormal findings could not be attributed large-scale hair cell damage within the cochlea. Consistent differences in the shape of the DP-gram (DPOAE magnitude as a function of presentation frequency, f2) were found in tinnitus subjects. A quantitative method for assessing DP-gram shape was developed, and statistical analyses were performed to determine whether tinnitus or other patient characteristics correlated with the abnormal DP-gram shape. The data collected in this study suggest peripheral auditory malfunction in tinnitus subjects with normal audiograms.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 48-50).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53201
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.