MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analytic progress in open string field theory

Author(s)
Kiermaier, Michael Stefan
Thumbnail
DownloadFull printable version (26.15Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Barton Zwiebach.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Open string field theory provides an action functional for open string fields, and it is thus a manifestly off-shell formulation of open string theory. The solutions to the equation of motion of open string field theory are expected to describe consistent classical open string backgrounds. In this thesis, I present a number of analytic results in bosonic open string field theory. Firstly, I present analytic solutions to the equation of motion that describe an exactly marginal deformation of the chosen open string background. A prominent example in this class is the rolling-tachyon solution, which describes the decay of an unstable D-brane. Furthermore, I demonstrate that the Riemann surface geometry of string perturbation theory can be radically simplified using propagators of Schnabl gauge instead of Siegel gauge. In principle, this simplification allows the analytic computation of arbitrary off-shell one-loop open string amplitudes. Finally, I show that this simplicity of Schnabl gauge one-loop Riemann surfaces can be combined with the knowledge of analytic solutions to construct an analytically computable string field theory boundary state. For all known solutions, this boundary state precisely coincides with the BCFT boundary state of the open string background that the solution is expected to describe. This construction thus confirms the physical interpretation of known analytic solutions and thus provides a nice consistency check on open string field theory.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 179-185).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53227
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.