Show simple item record

dc.contributor.advisorPeter Szolovits.en_US
dc.contributor.authorHug, Caleb W. (Caleb Wayne)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-25T15:27:00Z
dc.date.available2010-03-25T15:27:00Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53290
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 229-237).en_US
dc.description.abstractThe modern intensive care unit (ICU) has become a complex, expensive, data-intensive environment. Caregivers maintain an overall assessment of their patients based on important observations and trends. If an advanced monitoring system could also reliably provide a systemic interpretation of a patient's observations it could help caregivers interpret these data more rapidly and perhaps more accurately. In this thesis I use retrospective analysis of mixed medical/surgical intensive care patients to develop predictive models. Logistic regression is applied to 7048 development patients with several hundred candidate variables. These candidate variables range from simple vitals to long term trends and baseline deviations. Final models are selected by backward elimination on top cross-validated variables and validated on 3018 additional patients. The real-time acuity score (RAS) that I develop demonstrates strong discrimination ability for patient mortality, with an ROC area (AUC) of 0.880. The final model includes a number of variables known to be associated with mortality, but also computationally intensive variables absent in other severity scores. In addition to RAS, I also develop secondary outcome models that perform well at predicting pressor weaning (AUC=0.825), intraaortic balloon pump removal (AUC=0.816), the onset of septic shock (AUC=0.843), and acute kidney injury (AUC=0.742). Real-time mortality prediction is a feasible way to provide continuous risk assessment for ICU patients. RAS offers similar discrimination ability when compared to models computed once per day, based on aggregate data over that day.en_US
dc.description.abstract(cont.) Moreover, RAS mortality predictions are better at discrimination than a customized SAPS II score (Day 3 AUC=0.878 vs AUC=0.849, p < 0.05). The secondary outcome models also provide interesting insights into patient responses to care and patient risk profiles. While models trained for specifically recognizing secondary outcomes consistently outperform the RAS model at their specific tasks, RAS provides useful baseline risk estimates throughout these events and in some cases offers a notable level of predictive utility.en_US
dc.description.statementofresponsibilityby Caleb Wayne Hug.en_US
dc.format.extent315 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDetecting hazardous intensive care patient episodes using real-time mortality modelsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc549054988en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record