MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic correction of grammatical errors in non-native English text

Author(s)
Lee, John Sie Yuen, 1977-
Thumbnail
DownloadFull printable version (7.212Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Stephanie Seneff.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Learning a foreign language requires much practice outside of the classroom. Computer-assisted language learning systems can help fill this need, and one desirable capability of such systems is the automatic correction of grammatical errors in texts written by non-native speakers. This dissertation concerns the correction of non-native grammatical errors in English text, and the closely related task of generating test items for language learning, using a combination of statistical and linguistic methods. We show that syntactic analysis enables extraction of more salient features. We address issues concerning robustness in feature extraction from non-native texts; and also design a framework for simultaneous correction of multiple error types. Our proposed methods are applied on some of the most common usage errors, including prepositions, verb forms, and articles. The methods are evaluated on sentences with synthetic and real errors, and in both restricted and open domains. A secondary theme of this dissertation is that of user customization. We perform a detailed analysis on a non-native corpus, illustrating the utility of an error model based on the mother tongue. We study the benefits of adjusting the correction models based on the quality of the input text; and also present novel methods to generate high-quality multiple-choice items that are tailored to the interests of the user.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 99-107).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53292
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.