Show simple item record

dc.contributor.advisorWilliam T. Freeman and Edward H. Adelson.en_US
dc.contributor.authorLiu, Ce, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-25T15:27:22Z
dc.date.available2010-03-25T15:27:22Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53293
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 153-164).en_US
dc.description.abstractThe focus of motion analysis has been on estimating a flow vector for every pixel by matching intensities. In my thesis, I will explore motion representations beyond the pixel level and new applications to which these representations lead. I first focus on analyzing motion from video sequences. Traditional motion analysis suffers from the inappropriate modeling of the grouping relationship of pixels and from a lack of ground-truth data. Using layers as the interface for humans to interact with videos, we build a human-assisted motion annotation system to obtain ground-truth motion, missing in the literature, for natural video sequences. Furthermore, we show that with the layer representation, we can detect and magnify small motions to make them visible to human eyes. Then we move to a contour presentation to analyze the motion for textureless objects under occlusion. We demonstrate that simultaneous boundary grouping and motion analysis can solve challenging data, where the traditional pixel-wise motion analysis fails. In the second part of my thesis, I will show the benefits of matching local image structures instead of intensity values. We propose SIFT flow that establishes dense, semantically meaningful correspondence between two images across scenes by matching pixel-wise SIFT features. Using SIFT flow, we develop a new framework for image parsing by transferring the metadata information, such as annotation, motion and depth, from the images in a large database to an unknown query image. We demonstrate this framework using new applications such as predicting motion from a single image and motion synthesis via object transfer.en_US
dc.description.abstract(cont.) Based on SIFT flow, we introduce a nonparametric scene parsing system using label transfer, with very promising experimental results suggesting that our system outperforms state-of-the-art techniques based on training classifiers.en_US
dc.description.statementofresponsibilityby Ce Liu.en_US
dc.format.extent164 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleBeyond pixels : exploring new representations and applications for motion analysisen_US
dc.title.alternativeExploring new representations and applications for motion analysisen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc549097790en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record