MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Directed random testing

Author(s)
Pacheco, Carlos, Ph.D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (21.24Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Daniel N. Jackson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Random testing can quickly generate many tests, is easy to implement, scales to large software applications, and reveals software errors. But it tends to generate many tests that are illegal or that exercise the same parts of the code as other tests, thus limiting its effectiveness. Directed random testing is a new approach to test generation that overcomes these limitations, by combining a bottom-up generation of tests with runtime guidance. A directed random test generator takes a collection of operations under test and generates new tests incrementally, by randomly selecting operations to apply and finding arguments from among previously-constructed tests. As soon as it generates a new test, the generator executes it, and the result determines whether the test is redundant, illegal, error-revealing, or useful for generating more tests. The technique outputs failing tests pointing to potential errors that should be corrected, and passing tests that can be used for regression testing. The thesis also contributes auxiliary techniques that post-process the generated tests, including a simplification technique that transforms a, failing test into a smaller one that better isolates the cause of failure, and a branch-directed test generation technique that aims to increase the code coverage achieved by the set of generated tests. Applied to 14 widely-used libraries (including the Java JDK and the core .NET framework libraries), directed random testing quickly reveals many serious, previously unknown errors in the libraries. And compared with other test generation tools (model checking, symbolic execution, and traditional random testing), it reveals more errors and achieves higher code coverage.
 
(cont.) In an industrial case study, a test team at Microsoft using the technique discovered in fifteen hours of human effort as many errors as they typically discover in a person-year of effort using other testing methods.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 155-162).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53297
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.