Show simple item record

dc.contributor.advisorMadhu Sudan.en_US
dc.contributor.authorSaraf, Shubhangien_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-25T15:31:14Z
dc.date.available2010-03-25T15:31:14Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53322
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 51-53).en_US
dc.description.abstractWe extend the "method of multiplicities" to get the following results, of interest in combinatorics and randomness extraction. 1. We show that every Kakeya set (a set of points that contains a line in every direction) in F' must be of size at least qn/2n. This bound is tight to within a 2 + o(1) factor for every n as q -- oc, compared to previous bounds that were off by exponential factors in n. 2. We give improved randomness extractors and "randomness mergers". Mergers are seeded functions that take as input A (possibly correlated) random variables in {0, 1}N and a short random seed and output a single random variable in {0, 1}N that is statistically close to having entropy (1 - 6) - N when one of the A input variables is distributed uniformly. The seed we require is only (1/6) - log A-bits long, which significantly improves upon previous construction of mergers. 3. Using our new mergers, we show how to construct randomness extractors that use logarithmic length seeds while extracting 1- o(1) fraction of the min-entropy of the source. The "method of multiplicities", as used in prior work, analyzed subsets of vector spaces over finite fields by constructing somewhat low degree interpolating polynomials that vanish on every point in the subset with high multiplicity. The typical use of this method involved showing that the interpolating polynomial also vanished on some points outside the subset, and then used simple bounds on the number of zeroes to complete the analysis. Our augmentation to this technique is that we prove, under appropriate conditions, that the interpolating polynomial vanishes with high multiplicity outside the set. This novelty leads to significantly tighter analyses.en_US
dc.description.statementofresponsibilityby Shubhangi Saraf.en_US
dc.format.extent53 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleKakeya sets and the method of multiplicitiesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc550581713en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record