MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Trouble with Diversity: Fork-Join Networks with Heterogenous Customer Population

Author(s)
Nguyen, Viên
Thumbnail
DownloadOR-268-92.pdf (1.507Mb)
Metadata
Show full item record
Abstract
Consider a feedforward network of single-server stations populated by multiple job types. Each job requires the completion of a number of tasks whose order of execution is determined by a set of deterministic precedence constraints. The precedence requirements allow some tasks to be done in parallel (in which case tasks would "fork") and require that others be processed sequentially (where tasks may "join"). Jobs of a. given type share the same precedence constraints, interarrival time distributions, and service time distributions, but these characteristics may vary across different job types. We show that the heavy traffic limit of certain processes associated with heterogeneous fork-join networks can be expressed as a semimartingale reflected Brownian motion with polyhedral state space. The polyhedral region typically has many more faces than its dimension, and the description of the state space becomes quite complicated in this setting. One can interpret the proliferation of additional faces in heterogeneous fork-join networks as (i) articulations of the fork and join constraints, and (ii) results of the disordering effects that occur when jobs fork and join in their sojourns through the network.
Date issued
1992-10
URI
http://hdl.handle.net/1721.1/5406
Publisher
Massachusetts Institute of Technology, Operations Research Center
Series/Report no.
Operations Research Center Working Paper;OR 268-92
Keywords
fork-join networks, heterogeneous customer populations, reflected Brownian motion,

Collections
  • Operations Research Center Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.