MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved robustness and efficiency for automatic visual site monitoring

Author(s)
Dalley, Gerald Edwin
Thumbnail
DownloadFull printable version (89.89Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
W. Eric L. Grimson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Knowing who people are, where they are, what they are doing, and how they interact with other people and things is valuable from commercial, security, and space utilization perspectives. Video sensors backed by computer vision algorithms are a natural way to gather this data. Unfortunately, key technical issues persist in extracting features and models that are simultaneously efficient to compute and robust to issues such as adverse lighting conditions, distracting background motions, appearance changes over time, and occlusions. In this thesis, we present a set of techniques and model enhancements to better handle these problems, focusing on contributions in four areas. First, we improve background subtraction so it can better handle temporally irregular dynamic textures. This allows us to achieve a 5.5% drop in false positive rate on the Wallflower waving trees video. Secondly, we adapt the Dalal and Triggs Histogram of Oriented Gradients pedestrian detector to work on large-scale scenes with dense crowds and harsh lighting conditions: challenges which prevent us from easily using a background subtraction solution. These scenes contain hundreds of simultaneously visible people. To make using the algorithm computationally feasible, we have produced a novel implementation that runs on commodity graphics hardware and is up to 76 faster than our CPU-only implementation. We demonstrate the utility of this detector by modeling scene-level activities with a Hierarchical Dirichlet Process.
 
(cont.) Third, we show how one can improve the quality of pedestrian silhouettes for recognizing individual people. We combine general appearance information from a large population of pedestrians with semi-periodic shape information from individual silhouette sequences. Finally, we show how one can combine a variety of detection and tracking techniques to robustly handle a variety of event detection scenarios such as theft and left-luggage detection. We present the only complete set of results on a standardized collection of very challenging videos.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 219-228).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/54218
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.