MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mobile ad hoc networks for oceanic aircraft communications

Author(s)
Kingsbury, Ryan W
Thumbnail
DownloadFull printable version (1.684Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Eytan Modiano.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Research into mobile ad hoc networks (MANET's) has exploded in recent years. MANET's are a type of wireless network in which independently mobile nodes are capable of self-forming and maintaining a connected network, even in the face of topology changes. Surprisingly, there has been minimal work in applying these techniques to a problem that thousands of people face each day: lack of connectivity during transoceanic air travel. This work investigates the technical feasibility of using MANET techniques to provide connectivity from aircraft to land-based communication infrastructure. In pursuit of this goal, a simulation has been developed which incorporates a wide range of system issues including aircraft mobility, communication link performance, and optimal network allocation. At the center of this simulation lies an aircraft mobility model which fuses airline schedule data with probabilistic flight delay and cancellation events. An SNR-based link capacity model is used to predict feasible communication rates between aircraft and ground stations. Finally, an optimal max-min fair allocation algorithm is used to assess the capacity of this network. Our results show that system connectivity percentages in excess of 90% are achievable. Furthermore, the network allocation results indicate that megabit class data rates can be supplied to the majority of users. We conclude this thesis by presenting some design trade-offs that are likely to be of interest to those implementing the system.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 71-72).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/54224
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.