Show simple item record

dc.contributor.advisorJochem Marotzke.en_US
dc.contributor.authorIto, Takamitsuen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2010-04-28T15:32:13Z
dc.date.available2010-04-28T15:32:13Z
dc.date.copyright1999en_US
dc.date.issued1999en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54435
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1999.en_US
dc.descriptionIncludes bibliographical references (p. [84]-[87]).en_US
dc.description.abstractIn this thesis, I designed and implemented a simple atmosphere-ocean coupled carbon cycle model which can be used as a tool to uncover the mechanisms of the interaction between the dynamics of the atmosphere-ocean system and the oceanic reservoir of CO 2 on the 101 to 103 years time scale. The atmosphere-ocean coupled model is originally developed by Marotzke (20,21), and the biogeochemical model is developed by Follows(personal communication). The atmosphere-ocean-carbon model makes the atmosphere-ocean dynamics and the carbon cycle fully interactive, and results in two stationary states characterized by two distinct patterns of the thermohaline circulation. The temperature driven, high latitudes sinking mode showed significantly lower atmospheric pCO2 than the salinity-driven, low latitudes sinking mode. The atmosphere-ocean dynamics dominates the system behavior of the model. The carbon cycle weakly feedbacks on the atmosphere-ocean system through the radiation balance. The model reveals two feedback mechanisms, the global warming feedback and the thermohaline pCO 2 feedback. The thermohaline pCO2 feedback has three sub-components, which are the biological pump feedback, the outgassing feedback and the DIC exporting feedback. The numerical experiments estimate the relative importance among them. The system becomes less stable when all the feedback mechanism is introduced. The model could be used to understand some basic mechanism of the situations similar to the anthropogenic global warming. The stability analysis is applied to evaluate the model runs. The current rate of 7 GTC yr - 1 can induce the spontaneous shutdown of thermohaline circulation after 550 years of constant emission. The stability of the thermohaline circulation rapidly decreases even before the system stops the thermohaline circulation. The model parameterized surface alkalinity as a simple function of sea surface salinity or as a constant, rather than solving the alkalinity cycle explicitly. The system is sensitive to the parameterization, in which different assumptions on alkalinity lead to different results both analytically and numerically.en_US
dc.description.statementofresponsibilityby Takamitsu Ito.en_US
dc.format.extent83, [4] p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleFeedback mechanism in the oceanic carbon cycleen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.identifier.oclc43876479en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record