MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis and modeling of induced seismicity in petroleum reservoirs

Author(s)
Hooper, Heather J. (Heather Julie), 1975-
Thumbnail
DownloadFull printable version (4.919Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Daniel Burns.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Since 1998, a producing oil field in Oman has been experiencing microearthquake activity. The aim of this project is to compare numerical models of wave propagation using simple source representations to a small subset of these microearthquakes, with three goals in mind: 1) to understand whether the microearthquakes are generated by movement along a known fault system in the field, or by some other mechanism; 2) if the source is fault related, to better understand what kind of movement is occurring on the fault; and 3) to see if this simple modeling method provides useful results, and forms a basis for future work. Synthetic waveforms are generated using a one-dimensional, discrete wavenumber numerical model (Bouchon, 1980) with two simple source representations: an explosive point source and a vertical force. Comparison of the synthetic waveforms to the microearthquake data indicates that the vertical force results in a better match than the explosive point source. In addition, a simple model consisting of the superposition of four vertical forces (representing vertical fault rupture), results in waveforms that are very similar to the recorded events. These results suggest that the source of the microearthquakes is motion along a near-vertical normal fault system that has been mapped in the field. These results are also consistent with work by Sze and Toksoz (2001) in which relocation of the same events imaged a near-vertical normal fault in the field. Further work using fault rupture source modeling may provide additional insight into the amount of fault motion that is occurring in relation to these events.
Description
Thesis (S.M. in Geosystems)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2002.
 
Includes bibliographical references (p. 53).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/54445
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.