Show simple item record

dc.contributor.advisorKripa K. Varanasi.en_US
dc.contributor.authorHughes, Fiona Rachelen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-04-28T15:38:15Z
dc.date.available2010-04-28T15:38:15Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54478
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 49).en_US
dc.description.abstractIn pool boiling and spray cooling the Leidenfrost point marks the transition from nucleate boiling, in which the evaporating liquid is in contact with the surface, and film boiling, in which a layer of vapor separates the fluid from the surface. For a single evaporating drop, the Leidenfrost point occurs when the capillary and gravitational forces are surpassed by the upward pressure of the escaping vapor. This thesis develops an analytical model to predict the Leidenfrost point for a microstructured surface. The microstructure consists of a regular array of square posts geometrically defined by aspect ratio and spacing ratio. The vapor pressure is modeled using the momentum equation for flow in a porous medium. Varying the geometric parameters indicated that aspect ratio and spacing ratio must be optimized to achieve the maximum Leidenfrost temperature. For a water drop evaporating from a silicon surface, the maximum Leidenfrost temperature is predicted to occur with an aspect ratio of 1.3 and a spacing ratio of 1.5. [mu]L water drops were evaporated from a smooth surface made of silicon and porous surfaces made of aluminum oxide. The microstructure of the surfaces was different from that modeled, but increased wettability and higher Leidenfrost temperatures were observed as porosity increased. Recommendations for further research in this area are made.en_US
dc.description.statementofresponsibilityby Fiona Rachel Hughesen_US
dc.format.extent49 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleThe evaporation of drops from super-heated nano-engineered surfacesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc556252591en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record