Show simple item record

dc.contributor.advisorAnette E. Hosoi.en_US
dc.contributor.authorShieh, Sarahen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-04-28T15:42:13Z
dc.date.available2010-04-28T15:42:13Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54495
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 23-24).en_US
dc.description.abstractAn experimental study was carried out to determine if drag reducing polymers can be simple indicators of hemolytic potential in biomechanical devices. Specifically, three different blood pumps, known as a left ventricle assist devices (LVADs) were operated in a test loop using an aqueous solution of polyethylene glycol (PEO, MW = 5000 kDa), a known drag reducing polymer. The pumps were operated under controlled parameters and the change in viscosity (cP) and drag reduction (%DR) for each pump was monitored over the specified time period. The CentriMag® (CM) was used to confirm the drag reducing behavior of PEO, while HeartMate® II (HM II) and HeartMate® III (HM III) were used to determine if there was a correlation between experimental results and actual hemolysis results. Experimental results showed that the mathematical difference between the average final and initial viscosity of HM II was greater than the difference for HM III. HM II had a difference of 0.21 cP and HM III had a difference of 0.16 cP. Hemolysis results using bovine blood showed that HM II had a higher hemolysis rate of 3.80 +/- 1.11 g/day and a higher milligram normalized index of hemolysis of 0.0393 +/- 0.0155. The average hemolysis rate for HM III was 1.38 +/- 0.63 g/day and the milligram normalized index of hemolysis (mg N.I.H.) was 0.571 +/- 0.333. This positive correlation shows that PEO can be a simple indicator of hemolytic potential for biomechanical devices. More data and experimentation is needed to further understand the behavior of PEO and it's ability to indicate hemolytic potential using a wider range of biomechanical devices.en_US
dc.description.statementofresponsibilityby Sarah Shieh.en_US
dc.format.extent24 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDrag reducing polymers as simple indicators of hemolytic potential in biomechanical devicesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc558634750en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record