MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kinematic study of human ankle control during walking

Author(s)
Zimmerman, Julia C
Thumbnail
DownloadFull printable version (7.291Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Neville Hogan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In order to determine the extent to which ankle motion is voluntarily controlled during walking, angular velocity measurements at the ankle were taken in two cases. In the first case, subjects were seated and instructed to move their ankle as quickly as possible in eight directions indicated by a computer program in dorsi- and plantar-flexion and inversion and eversion. In the second case, subjects were instructed to walk on a treadmill for thirty seconds at a normal pace, and at speeds that felt faster and slower than normal. Velocity measurements were made using an exoskeletal robot, called the Anklebot, originally designed for rehabilitation purposes. The electromyogram of anterior tibialis, peroneus longus, and gastrocnemius muscles was also recorded. Results showed that all subjects plantarflexed their foot at a higher velocity after heel-strike while walking than when moving at their maximum voluntary speed. This implies that this motion results in part from foot-ground interaction mediated by the mechanical impedance of the ankle and is not solely imposed by contraction of the gastrocnemius and other muscles. In contrast, results also showed that subjects were able to dorsiflex their foot at a higher velocity when moving at maximum voluntary speed than was observed after toe-off while walking.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 38).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/54546
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.