Show simple item record

dc.contributor.advisorCaroline A. Ross.en_US
dc.contributor.authorWicaksono, Aulia Tegaren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2010-04-28T17:02:44Z
dc.date.available2010-04-28T17:02:44Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54567
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 79-81).en_US
dc.description.abstractFlash memory, the current leading technology for non-volatile memory (NVM), is projected by many to run obsolete in the face of future miniaturization trend in the semiconductor devices due to some of its technical limitations. Several different technologies have been developed in attempt for replacing Flash memory as the most dominant NVM technology; none of which seems to indicate significant success at the moment. Among these technologies is RRAM (Resistive Random Access Memory), a novel type of memory technology which has only recently emerged to join the race. The underlying principle of an RRAM device is based on the colossal electroresistance (CER) effect, i.e. the resistance switching behavior upon application of voltage of varying polarity and/or magnitude. This thesis aims to investigate the CER effect and how it can be designed to be a non-volatile memory as well as other novel application, e.g. memristor. The various technical aspects pertaining to this phenomenon, including the materials and the physical basis, are explored and analyzed. As a complementary to that, the market potential of the RRAM technology is also assessed. This includes the market study of memory industry, the current intellectual property (IP) landscape and some of the relevant business strategies. The production strategy (i.e. the production cost, initial investment, and pricing strategy) is then derived from the technical and market analysis evaluated earlier and with using some reasonable assumptions.en_US
dc.description.statementofresponsibilityby Aulia Tegar Wicaksono.en_US
dc.format.extentx, 81 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleEvaluation of the colossal electroresistance (CER) effect and its application in the non-volatile Resistive Random Access Memory (RRAM)en_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc567698001en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record