Show simple item record

dc.contributor.advisorMarc A. Baldo and Francesco Stellacci.en_US
dc.contributor.authorMilaninia, Kaveh Mehdien_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2010-04-28T17:04:00Z
dc.date.available2010-04-28T17:04:00Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54576
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 147-153).en_US
dc.description.abstractIn this thesis two unique carbon based nanoelectromechanical switches or carbon nano-relays are demonstrated as a toolkit for investigating NEMs based low power switching. The first is a vertical carbon nano-relay, consisting of a vertically aligned carbon nanotube/fiber (CN) between two contacts and operated by pull-off, and the second, a double graphene switch, consisting of two electromechanically actuated stacked layers of polycrystalline graphene. Vertical carbon nano-relays were initially prototyped by inserting a CN between two contacts through the use of a nanopositioner. The prototype demonstrated pull-off operation and multiple switching. To our knowledge this is the only example to date of a multiple-use NEMs switch that operates with pull-off. Next a wafer integrated device was fabricated. Although pull-in was demonstrated in these integrated devices, pull-off was not possible primarily due to limitations in CN growth, which were also investigated. In the work on a double graphene switch we demonstrated an electromechanical switch comprising two polycrystalline graphene films, each deposited using ambient pressure chemical vapor deposition (CVD). The top film is pulled into electrical contact with the bottom film by application of approximately 5V between the layers. Contact is broken by mechanical restoring forces after bias is removed. The device switches several times before tearing. Demonstration of multiple switching at low voltage confirms that graphene is an attractive material for electromechanical switches.en_US
dc.description.statementofresponsibilityby Kaveh Mehdi Milaninia.en_US
dc.format.extent153 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleCarbon nano-relays for low power switchingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc568045882en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record