dc.contributor.advisor | Angela M. Belcher. | en_US |
dc.contributor.author | Lee, Yun Jung, Ph. D. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. | en_US |
dc.date.accessioned | 2010-04-28T17:04:17Z | |
dc.date.available | 2010-04-28T17:04:17Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/54578 | |
dc.description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 134-139). | en_US |
dc.description.abstract | Without doubt, energy and environment are becoming central issues for the future. In this regard, not only device performance but also environmentally sustainable ways of making energy device is important. To meet these needs, a M13 virus based biological toolkit was utilized in this work for controlling nanostructures of lithium ion battery electrodes which is a critical process in developing electrodes materials for high power applications. The M13 biological toolkit provides specificity, versatility and multifunctionality for controlling nanostructure of the materials using basic biological principles. The versatile E4 virus template could nucleate active cathode materials at low temperature by an environmentally benign method. High power lithium ion battery cathode materials were fabricated using genetically programmed multifunctional virus as a versatile scaffold for the synthesis and assembly of materials. A novel strategy for specifically attaching electrochemically active materials to conducting carbon nanotubes networks through biological molecular recognition was developed by manipulating the two-genes of the M13 virus. Viral amorphous iron phosphates cathodes achieved remarkable and otherwise impossible high power performance using this multifunctional virus. This environmentally benign low temperature biological scaffold could facilitate new types of electrode materials by activating a class of materials that have been excluded because of their extremely low electronic conductivity. Architecting nanostructures was further extended to activate noble metal alloy nanowires as anodes for lithium ion batteries by alleviating mechanical stress. | en_US |
dc.description.abstract | (cont.) By demonstrating electrochemical activity of noble metal alloy nanowires with various compositions, the M13 biological toolkit extended its utility for the study on the basic electrochemical property of materials. | en_US |
dc.description.statementofresponsibility | by Yun Jung Lee. | en_US |
dc.format.extent | [1], 139 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Materials Science and Engineering. | en_US |
dc.title | Nanostructured electrodes for lithium ion batteries using biological scaffolds | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph.D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | |
dc.identifier.oclc | 568172156 | en_US |