Search
Now showing items 1-3 of 3
Learning from Incomplete Data
(1995-01-24)
Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing features. In this paper we review the problem of learning from incomplete data from two statistical perspectives---the ...
A Note on the Generalization Performance of Kernel Classifiers with Margin
(2000-05-01)
We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The ...
Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks
(1996-02-09)
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. ...