Show simple item record

dc.contributor.advisorVivek K Goyal.en_US
dc.contributor.authorNguyen, Ha Quyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-04-28T17:15:10Z
dc.date.available2010-04-28T17:15:10Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54652
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 87-90).en_US
dc.description.abstractPermutation source codes are a class of structured vector quantizers with a computationally- simple encoding procedure. In this thesis, we provide two extensions that preserve the computational simplicity but yield improved operational rate-distortion performance. In the first approach, the new class of vector quantizers has a codebook comprising several permutation codes as subcodes. Methods for designing good code parameters are given. One method depends on optimizing the rate allocation in a shape-gain vector quantizer with gain-dependent wrapped spherical shape codebook. In the second approach, we introduce frame permutation quantization (FPQ), a new vector quantization technique using finite frames. In FPQ, a vector is encoded using a permutation source code to quantize its frame expansion. This means that the encoding is a partial ordering of the frame expansion coefficients. Compared to ordinary permutation source coding, FPQ produces a greater number of possible quantization rates and a higher maximum rate. Various representations for the partitions induced by FPQ are presented and reconstruction algorithms based on linear programming and quadratic programming are derived. Reconstruction using the canonical dual frame is also studied, and several results relate properties of the analysis frame to whether linear reconstruction techniques provide consistent reconstructions. Simulations for uniform and Gaussian sources show performance improvements over entropy-constrained scalar quantization for certain combinations of vector dimension and coding rate.en_US
dc.description.statementofresponsibilityby Ha Quy Nguyen.en_US
dc.format.extent90 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleGeneralizations of permutation source codesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc606595689en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record