Show simple item record

dc.contributor.advisorRobert E. Hillman.en_US
dc.contributor.authorMasaki, Asakoen_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2010-04-28T17:17:17Z
dc.date.available2010-04-28T17:17:17Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54666
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 105-109).en_US
dc.description.abstractFew empirically-derived guidelines exist for optimizing the assessment of vocal function in children with voice disorders. The goal of this investigation was to identify a minimal set of speech tasks and associated acoustic analysis methods that are most salient in characterizing the impact of vocal nodules on vocal function in children. Hence, a pediatric assessment protocol was developed based on the standardized Consensus Auditory Perceptual Evaluation of Voice (CAPE-V) used to evaluate adult voices. Adult and pediatric versions of the CAPE-V protocols were used to gather recordings of vowels and sentences from adult females and children (4-6 and 8-10 year olds) with normal voices and vocal nodules, and these recordings were subjected to perceptual and acoustic analyses. Results showed that perceptual ratings for breathiness best characterized the presence of nodules in children's voices, and ratings for the production of sentences best differentiated normal voices and voices with nodules for both children and adults. Selected voice quality-related acoustic algorithms designed to quantitatively evaluate acoustic measures of vowels and sentences, were modified to be pitch-independent for use in analyzing children's voices. Synthesized vowels for children and adults were used to validate the modified algorithms by systematically assessing the effects of manipulating the periodicity and spectral characteristics of the synthesizer's voicing source.en_US
dc.description.abstract(cont.) In applying the validated algorithms to the recordings of subjects with normal voices and vocal nodules, the acoustic measure tended to differentiate normal voices and voices with nodules in children and adults, and some displayed significant correlations with the perceptual attributes of overall severity of dysphonia, roughness, and/or breathiness. None of the acoustic measures correlated significantly with the perceptual attribute of strain. Limitations in the strength of the correlations between acoustic measures and perceptual attributes were attributed to factors that can be addressed in future investigations, which can now utilize the algorithms that were developed in this investigation for children's voices. Preliminary recommendations are made for the clinical assessment of pediatric voice disorders.en_US
dc.description.statementofresponsibilityby Asako Masaki.en_US
dc.format.extentxi, 109 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleOptimizing acoustic and perceptual assessment of voice quality in children with vocal nodulesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc607313724en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record