Show simple item record

dc.contributor.authorTong, Lang
dc.contributor.authorAnandkumar, Animashree
dc.contributor.authorWillsky, Alan S.
dc.date.accessioned2010-05-11T15:38:16Z
dc.date.available2010-05-11T15:38:16Z
dc.date.issued2009-08
dc.date.submitted2009-06
dc.identifier.isbn978-1-4244-4313-0
dc.identifier.isbn978-1-4244-4312-3
dc.identifier.otherINSPEC Accession Number: 10842411
dc.identifier.urihttp://hdl.handle.net/1721.1/54752
dc.description.abstractThe problem of binary hypothesis testing is considered when the measurements are drawn from a Markov random field (MRF) under each hypothesis. Spatial dependence of the measurements is incorporated by explicitly modeling the influence of sensor node locations on the clique potential functions of each MRF hypothesis. The nodes are placed i.i.d. in expanding areas with increasing sample size. Asymptotic performance of hypothesis testing is analyzed through the Neyman-Pearson type-II error exponent. The error exponent is expressed as the limit of a functional over dependency edges of the MRF hypotheses for acyclic graphs. Using the law of large numbers for graph functionals, the error exponent is derived.en
dc.description.sponsorshipUnited States. Army Research Laboratory. Communications & Networks Allianceen
dc.description.sponsorshipUnited States. Army Research Office (Grant ARO-W911NF-06-1-0346)en
dc.description.sponsorshipUnited States. Army Research Laboratory. Collaborative Technology Alliances (CTA) Program (Cooperative Agreement DAAD19-01-2-0011)en
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISIT.2009.5205358en
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en
dc.sourceIEEEen
dc.titleDetection error exponent for spatially dependent samples in random networksen
dc.typeArticleen
dc.identifier.citationAnandkumar, A., A. Willsky, and Lang Tong. “Detection error exponent for spatially dependent samples in random networks.” Information Theory, 2009. ISIT 2009. IEEE International Symposium on. 2009. 2882-2886. © 2009 Institute of Electrical and Electronics Engineers.en
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverWillsky, Alan S.
dc.contributor.mitauthorAnandkumar, Animashree
dc.contributor.mitauthorWillsky, Alan S.
dc.relation.journalIEEE International Symposium on Information Theory, 2009. ISIT 2009.en
dc.eprint.versionFinal published versionen
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen
eprint.statushttp://purl.org/eprint/status/PeerRevieweden
dspace.orderedauthorsAnandkumar, Animashree; Tong, Lang; Willsky, Alanen
dc.identifier.orcidhttps://orcid.org/0000-0003-0149-5888
mit.licensePUBLISHER_POLICYen
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record