Show simple item record

dc.contributor.advisorW. Rockwell Geyer.en_US
dc.contributor.authorEngel, Patricia Annen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2010-05-25T19:19:50Z
dc.date.available2010-05-25T19:19:50Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54845
dc.descriptionThesis (S. M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 41-43).en_US
dc.description.abstractMechanisms for the tidal component of salt flux in the Hudson River estuary are investigated using a 3D numerical model. Variations with river discharge, fortnightly tidal forcing, and along channel variability are explored. Four river discharge conditions were considered: 1200 m3 s-1, 600 m3 s-1, 300 m3 s-1, 150 m3 s-1. Tide-induced residual salt flux was found to be variable along the channel, with locations of counter-gradient flux during both neap and spring tide. The magnitude of tidal salt flux scales with the river flow and has no clear dependence on the spring-neap tidal forcing. The diffusive fraction, ?, has a value of -0.25 to 0.46 in the lower estuary, increasing to -0.23 to 1 near the head of salt. The phase lag between tidal salinity and velocity is analyzed at three cross-sections with: large positive, negative, and weak tidal salt flux. The composite Froude number, G2, is calculated along the channel and indicates nearly ubiquitous supercritical flow for maximum flood and ebb during both neap and spring tides. Subcritical flow occurs during slack water and at geographically locked locations during neap floods. Application of two-layer, frictional hydraulic theory reveals how variations in channel width and depth generate tidal asymmetries in cross-sectional salinity, the key ingredient of tidal salt flux.en_US
dc.description.statementofresponsibilityby Patricia Ann Engel.en_US
dc.format.extent45 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshSalinity Computer simulationen_US
dc.subject.lcshTidesen_US
dc.titleSpatial and temporal variability of tide-induced salt flux in a partially mixed estuaryen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc608077664en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record