MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for particle remeshing applied to smoothed particle hydrodynamics

Author(s)
Galagali, Nikhil
Thumbnail
DownloadFull printable version (6.143Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
John R. Williams.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis outlines adaptivity schemes for particle-based methods for the simulation of nearly incompressible fluid flows. As with the remeshing schemes used in mesh and grid-based methods, there is a need to use localized refinement in particle methods to reduce computational costs. Various forms of particle refinement have been proposed for particle-based methods such as Smoothed Particle Hydrodynamics (SPH). However, none of the techniques that exist currently are able to retain the original degree of randomness among particles. Existing methods reinitialize particle positions on a regular grid. Using such a method for region localized refinement can lead to discontinuities at the interfaces between refined and unrefined particle domains. In turn, this can produce inaccurate results or solution divergence. This thesis outlines the development of new localized refinement algorithms that are capable of retaining the initial randomness of the particles, thus eliminating transition zone discontinuities. The algorithms were tested through SPH simulations of Couette Flow and Poiseuille Flow with spatially varying particle spacing. The determined velocity profiles agree well with theoretical results. In addition, the algorithms were also tested on a flow past a cylinder problem, but with a complete domain remeshing. The original and the remeshed particle distributions showed similar velocity profiles. The algorithms can be extended to 3-D flows with few changes, and allow the simulation of multi-scale flows at reduced computational costs.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 57-59).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55074
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.